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ABSTRACT
The highly-filamented nature of the coronal plasma significantly influences dynamic processes in the corona such as mag-
netohydrodynamic waves and oscillations. Fast magnetoacoustic waves, guided by coronal plasma non-uniformities, exhibit
strong geometric dispersion, forming quasi-periodic fast-propagating (QFP) wave trains. QFP wave trains are observed in
extreme-ultraviolet imaging data and indirectly in microwaves and low-frequency radio, aiding in understanding the magnetic
connectivity, energy, and mass transport in the corona. However, measuring the field-aligned group speed of QFP wave trains,
as a key parameter for seismological analysis, is challenging due to strong dispersion and associated rapid evolution of the wave
train envelope. We demonstrate that the group speed of QFP wave trains formed in plane low-𝛽 coronal plasma non-uniformities
can be assessed through the propagation of the wave train’s effective centre of mass, referred to as the wave train’s centroid
speed. This centroid speed, as a potential observable, is shown empirically to correspond to the group speed of the most energetic
Fourier harmonic in the wave train. The centroid speed is found to be almost insensitive to the waveguide density contrast with
the ambient corona, and to vary with the steepness of the transverse density profile. The discrepancy between the centroid speed
as the group speed measure and the phase speed at the corresponding wavelength is shown to reach 70%, which is crucial for
the energy flux estimation and interpretation of observations.
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1 INTRODUCTION

The elastic and compressible plasma of the corona of the Sun is
known to support the propagation of various types of magnetohydro-
dynamic (MHD) waves (e.g., Nakariakov & Kolotkov 2020). Coronal
MHD waves are a subject to intensive ongoing studies in the con-
text of the coronal heating problem (e.g., Van Doorsselaere et al.
2020), and also as natural plasma diagnostic tools (e.g., De Moortel
2005). Properties of the waves are highly affected by perpendicular
non-uniformity of equilibrium plasma parameters, such as the den-
sity and temperature (e.g., Edwin & Roberts 1982, 1983). Thus, the
field-aligned filamentation of the solar corona in a form of various
plasma loops, plumes, etc., plays a decisive role in the MHD wave
processes in that plasma environment (e.g., Nakariakov et al. 2016).
In particular, coronal plasma non-uniformities act as fast magnetoa-
coustic waveguides (e.g., Edwin & Roberts 1988). The fast waves
which, in a uniform medium, are perpendicular or oblique, become
parallel to the magnetic field because of the reflection or refraction
on the non-uniformity of the fast speed.

Guided fast waves are well resolved in the corona in a form of
quasi-periodic fast-propagating (QFP) disturbances of the extreme-
ultraviolet (EUV) emission intensity (e.g., Liu et al. 2011; Shen &
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Liu 2012; Shen et al. 2013; Liu et al. 2012; Qu et al. 2017; Shen
et al. 2019; Miao et al. 2019, 2020; Shen et al. 2020). Typically, QFP
waves resemble a train of “ripples”, emanating from an epicentre
in an active region. The waves travel along coronal loops or fan
structures, extended in the apparent direction of the magnetic field.
Often, the perpendicular size of the observed wave front increases
with the distance from the driver, with the typical expansion angle of
about a few tens of degrees (e.g., Shen et al. 2022). Typical relative
amplitudes of the EUV intensity perturbations are 1%–8%. Typical
projected phase speeds are higher than several hundred km s−1. The
latter property clearly distinguishes the QFP waves from another
propagating wave phenomenon observed in the solar corona, the slow
magnetoacoustic waves which propagate at the speed lower than a
few hundred km s−1 (e.g., De Moortel 2006; Banerjee et al. 2021).
In some cases, QFP waves and slow waves are detected to propagate
simultaneously along the same coronal plasma structure (e.g., Zhang
et al. 2015). The oscillation periods range from several tens to several
hundred seconds. A QFP with a much shorter oscillation period, of
about 6 s, and the phase speed about 2100 km s−1, travelling along an
active region coronal loop, was observed by Williams et al. (2002) in
the white light intensity during a solar eclipse. Usually, QFP waves
show several consecutively propagating wave fronts, and last for a few
oscillation cycles only, which is another difference with slow waves
which typically last for several tens of cycles at least. However, in
some cases, a QFP wave train has more than ten wave fronts (Nisticò
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et al. 2014). In addition, there is another kind of QFP waves detected
in EUV, which are seen to propagate apparently across the local
magnetic field (Shen et al. 2022). These so-called broad QFP waves
have a relative amplitude of up to 30%, and a larger angular extent
of about 90◦–360◦.

Sometimes, quasi-periodic pulsations (QPP) often observed in
light curves of solar flares detected in various observational bands
(see Zimovets et al. 2021, for a recent comprehensive review), have
time signatures typical for QFP waves. For example, Kumar et al.
(2017) observed a QPP pattern with oscillation periods about 100 s
in the microwave, decimetric and soft X-ray emissions. Almost si-
multaneously, a QFP wave with the instantaneous period decreasing
from 240 s to 120 s, and the phase speed about 1000 km s−1 appeared
in the EUV. This finding supports the association of QPP with QFP
waves in cases when the latter is not detected (e.g., Mészárosová
et al. 2009, 2011; Kolotkov et al. 2018; Yu & Chen 2019).

QFP waves could be driven by either periodic or impulsive energy
releases, see Ofman et al. (2011); Ofman & Liu (2018) and, for ex-
ample, Nakariakov et al. (2004); Yuan et al. (2013); Nisticò et al.
(2014), respectively. Theoretical modelling of the latter mechanism
demonstrated the formation of a quasi-periodic wave train from an
impulsive initial perturbation (e.g., Murawski & Roberts 1993a,b,c;
Nakariakov et al. 2005; Nisticò et al. 2014). This effect is an intrinsic
feature of the guided fast magnetoacoustic wave propagation, caused
by the wave dispersion, i.e., the dependence of the phase and group
speeds on the oscillation period or the wavelength along the waveg-
uide (e.g., Roberts et al. 1984; Oliver et al. 2014; Li et al. 2020).
The wave dispersion is caused by the presence of the characteristic
spatial scale in the system, the perpendicular width of the waveg-
uide. This dispersion mechanism appears in ideal MHD, and is not
caused by the Hall effect or electron inertia. Typically, fast wave
trains have an asymmetric envelope, and show the variation of the
instantaneous oscillation period. Both effects cease with narrowing
the initial spectrum of the driver (Nakariakov et al. 2005).

Characteristic signatures of the dispersively formed fast wave train
are determined by the perpendicular profile of the fast speed (e.g.,
Nakariakov & Roberts 1995; Yu et al. 2017; Li et al. 2018). For
smoother profiles, the wavelet power spectrum of the fast wave train
has a characteristic “tadpole” shape in both slab and cylindrical ge-
ometries, see, e.g., (Nakariakov et al. 2004; Guo et al. 2022) and
(Shestov et al. 2015), respectively, and in a slab with a current sheet
(Jelínek & Karlický 2012; Mészárosová et al. 2014). This feature is
consistent with those detected in some observations (e.g., Nakariakov
et al. 2004; Kumar et al. 2017). For steeper profiles, the wavelet spec-
trum has a characteristic “boomerang” shape (Kolotkov et al. 2021),
which has also been observationally detected (e.g., Mészárosová et al.
2011). Essentially, the wavelet signature is determined by the depen-
dence of the group speed of the guided fast wave upon the parallel
wavenumber (Nakariakov et al. 2004). This effect takes place in 2D
non-uniformities too, e.g., in magnetic funnels (Pascoe et al. 2013).
Fast wave trains driven by a quasi-periodic driver modelled by (e.g.,
Ofman et al. 2011; Liu et al. 2012) are also consistent with the ob-
served behaviour of QFP waves. A periodically driven wave train
does not demonstrate a significant evolution. It is consistent with the
dispersive evolution model, as in a narrowband signal, group speeds
of spectral harmonics do not differ much from each other.

The projected phase speed of QFP waves could be readily esti-
mated by measuring the angle of the diagonal ridges in the time-
distance map constructed along the wave path in observational data.
However, coronal seismology by QFP waves, such as estimating the
parameters of the perpendicular non-uniformity of the plasma which
is crucial for revealing the nature of coronal loops and the heating

mechanism, also requires the estimation of the group speed. Further-
more, the energy flux in the waves is determined by the group speed
(e.g., Laing & Edwin 1995), which is crucial for assessing the role
of QFP waves in coronal heating (Van Doorsselaere et al. 2020).
Its estimation by the phase speed (as in, e.g., Ofman & Liu 2018)
relies on the assumption that those speeds have close values. But,
previous theoretical modelling demonstrated that group and phase
speeds of guided fast waves can significantly differ from each other
(e.g., Nakariakov & Roberts 1995; Yu et al. 2017; Li et al. 2018). In
particular, the difference between the phase and group speeds affects
the energy flux estimation, as it depends on the value of the speed to
the power of three (see, e.g., Eq. (1) of Ofman & Liu 2018). Thus,
there is a need for a practical recipe for estimating the group speed in
imaging data. This procedure is not trivial, as the textbook definition
of the group speed as the speed of an envelope of a wave packet is
based on the assumption that the wave spectrum is narrow. However,
fast magnetoacoustic waves with the parallel wavelengths compa-
rable to the perpendicular width of the waveguide experience high
dispersion. Impulsively excited, i.e., broadband fast wave trains have
spectral components with group speeds different by a factor of more
than two from each other. This means that the wave train envelope
experiences rapid evolution and is not symmetric. In particular, the
maximum of the perturbation propagates at a speed different from
the centre of the wave train and of its leading and trailing edges.

The aim of this paper is to develop a technique for estimating the
group speed of guided fast wave trains in plasma non-uniformities
of the solar corona, and to assess its difference with the phase speed
that one should expect in the data analysis. In the study, we adapt the
concept of a “centrovelocity” related to the centroid of the pulse in
the time and spatial domains and used in, for example, Geophysics
for characterising the wave energy transport in dissipative and dis-
persive media (e.g., Carcione et al. 2010). In Sec. 2, we describe the
theoretical model and introduce the concept of a centroid velocity
of QFP wave trains in the solar corona. In Sec. 3, we demonstrate
the link between the wave train’s centroid speed and the group speed
of the most energetic parallel spatial harmonic. Section 4 provides a
brief summary of the obtained results, discussion and conclusions.

2 THE CONCEPT OF THE CENTROID SPEED OF GUIDED
FAST WAVE TRAINS

In the magnetically dominated coronal plasma, i.e., with the plasma
parameter 𝛽 → 0, the dynamics of linear fast magnetoacoustic waves
guided by a plasma slab stretched along an equilibrium magnetic
field, which represents a coronal plasma non-uniformity, is described
by the 2D wave equation,

𝜕2𝑣𝑥
𝜕𝑡2

− 𝐶2
A (𝑥)

[
𝜕2𝑣𝑥
𝜕𝑥2 + 𝜕2𝑣𝑥

𝜕𝑧2

]
= 0, (1)

where 𝑣𝑥 stands for the perturbation of the perpendicular plasma
velocity, the 𝑧-axis coincides with the direction of the guiding mag-
netic field 𝐵0, and the 𝑥-axis represents the direction of the cross-
field plasma density enhancement, 𝜌0 (𝑥). The total pressure balance
requires the equilibrium magnetic field to be constant. Hence, the
enhancement of the equilibrium plasma density at a certain location
across the field results in the local depletion of the Alfvén speed,
𝐶A (𝑥) = 𝐵0/

√︁
𝜇0𝜌0 (𝑥). Thus, a field-aligned enhancement of the

zero-𝛽 plasma density is a cavity or a waveguide for fast magne-
toacoustic waves (e.g., Nakariakov et al. 2016). We approximate the
equilibrium perpendicular density profile 𝜌0 (𝑥) by the generalised
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symmetric Epstein function (Nakariakov & Roberts 1995),

𝜌0 (𝑥) = (𝜌in − 𝜌ext) sech2
[( 𝑥
𝑤

) 𝑝 ]
+ 𝜌ext, (2)

where 𝑤 is the characteristic half-width of the slab, 𝜌in and 𝜌ext are
the values of the plasma density at 𝑥 = 0 and 𝑥 → ∞ (corresponding
to the Alfvén speeds 𝐶A0 and 𝐶A∞, respectively). The parameter 𝑝
controls the steepness of the perpendicular density profile. In the limit
𝑝 ≫ 1, the profile becomes a step-function. The eigenvalue problem
for the profile given by Eq. (2), describing dispersion relations and
the perpendicular structure of guided fast magnetoacoustic waves,
has exact analytical solutions for 𝑝 → ∞ (Edwin & Roberts 1982)
and 𝑝 = 1 (Nakariakov & Roberts 1995; Cooper et al. 2003). As
the profile of 𝜌0 (𝑥) is symmetric, it is convenient to distinguish
between kink and sausage perturbations, with 𝑑 𝑣𝑥 (𝑥 = 0)/𝑑𝑥 = 0
and 𝑣𝑥 (𝑥 = 0) = 0, respectively.

The model with the generalised Epstein profile, i.e., with an arbi-
trary value of 𝑝, has been proposed by Nakariakov & Roberts (1995),
and used in a number of studies. However, in contrast to, for exam-
ple, Hornsey et al. (2014); Kolotkov et al. (2021), we do not make
the Fourier transform along the slab axis in Eq. (1). An initial value
problem constituted by the 2D wave equation is solved numerically
with the procedure ND-Solve in the Wolfram Mathematica 12 envi-
ronment, keeping the functional dependence on all three variables 𝑡,
𝑥, and 𝑧. The described approach, on one hand, allows us to study the
evolution of the entire broadband perturbation in time and space (not
just the evolution of a single Fourier harmonic along the slab axis)
with the subsequent fast wave train formation, and, on the other hand,
is more computationally effective than modelling fast wave trains in
terms of full MHD.

Snapshots of a fully developed fast wave train of the sausage
symmetry, excited by an impulsive driver

𝑣𝑥 (𝑥, 𝑧, 𝑡 = 0) = 𝐴0 𝑥 exp

[
−
(
𝑥

𝑑𝑥

)2
]

exp

[
−
(
𝑧 − 𝑧0
𝑑𝑧

)2
]
, (3)

are shown in Fig. 1 for a smooth (𝑝 = 1) and steep (𝑝 = 5) density
profiles, and the density ratio 𝜌in/𝜌ext = 10. In Eq. (3), 𝐴0 is the
arbitrary amplitude, the parameters 𝑑𝑥 = 𝑤 and 𝑑𝑧 =

√
2𝑤 determine

the width of the initial pulse in the 𝑥 and 𝑧 directions, respectively.
The initial pulse is centered at the axis of the slab (𝑥 = 0) and shifted
by 𝑧0 = 75𝑤 along the slab axis from the origin. The computational
domain extends from −50𝑤 to 50𝑤 in 𝑥 and from 0 to 150𝑤 in 𝑧.

Due to the broadband nature of the driver given by Eq. (3), multiple
Fourier harmonics along the slab axis are excited within a broad range
of parallel wavenumbers 𝑘𝑧 . Eventually, parallel harmonics with 𝑘𝑧
shorter than a certain cut-off value prescribed by the parameters of
the perpendicular density profile leak out of the slab. The cut-off
wavenumbers are

𝑘smooth
𝑐 =

1
𝑤

√√√
2𝐶2

A0
𝐶2

A∞ − 𝐶2
A0

, (4)

𝑘
steep
𝑐 =

𝜋

2𝑤

√√√
𝐶2

A0
𝐶2

A∞ − 𝐶2
A0

, (5)

for the Epstein and steep profiles, respectively (Nakariakov & Roberts
1995; Roberts et al. 1984). The remaining harmonics, with 𝑘𝑧 ≥ 𝑘𝑐 ,
get trapped inside the waveguide, propagate along it at different group
speeds due to dispersion, and collectively form a quasi-periodic fast
wave train guided along the slab. Thus, as such a wave train com-
prises a broad, continuous range of wavenumbers and corresponding
group speeds, a meaningful detection of its speed of propagation in

Figure 1. Perturbation of the perpendicular plasma velocity 𝑣𝑥 at time
𝑡 = 25 𝑤/𝐶A0 in an impulsively excited and dispersively evolving fast mag-
netoacoustic wave train (also referred to as quasi-periodic fast-propagating
wave in observations), guided by a field-aligned plasma slab with smooth
(a) and steep (b) perpendicular profiles of the plasma density, according to
Eq. (1). The horizontal black dashed lines correspond to 𝑥 = ±𝑥max, the value
of 𝑥 at which |𝑣𝑥 | is maximum for all values of 𝑧; |𝑥max | = 1.02𝑤, 0.79𝑤
in panels (a) and (b), respectively. 𝑧cent denotes the position of the centroid,
approximately equal to 104𝑤 and 100𝑤 in panels (a) and (b), respectively.
The parameter 𝑤 denotes the half-width of the slab, and 𝐶A0 is the Alfvén
speed at the axis of the slab.

observations remains a challenge. On the other hand, we can see in
Fig. 1 that, for example, wave trains in plasma slabs with smoother
density profiles appear globally to propagate faster. Thus, for prac-
tical purposes, it is useful to characterise the speed of propagation
of such quasi-periodic dispersively evolving fast wave trains from
such a global point of view, with the focus put on the dynamics of
the entire ensemble rather than the dynamics of individual Fourier
components constituting it. As such a global measure of the fast
wave train dynamics, we suggest to use the position of its centroid
determined as the effective “centre of mass” of the wave train.

Due to the symmetry of the problem with respect to the axis
of the slab, the centroid position in the 𝑥-direction remains fixed
to the axis of the slab, i.e., at 𝑥 = 0. Thus, only the wave train’s
centroid position along the 𝑧-axis, 𝑧cent varies with time as the wave
train propagates. Hence, we consider the centroid speed 𝑣cent =

𝑑 𝑧cent/𝑑 𝑡. Therefore, finding 𝑣cent as a characteristic measure of
the wave train propagation along the slab axis reduces to the one-
dimensional problem of finding 𝑧cent (𝑡). For this, we fix 𝑥 to 𝑥max
at which the wave train has the highest amplitude for all 𝑧 (see
Fig. 1) and consider 𝑣2

𝑥 (𝑥 = 𝑥max, 𝑧, 𝑡) which is an equivalent of the
instantaneous kinetic energy density. The pertrubation of the plasma
mass density in the wave train 𝜌(𝑥 = 𝑥max, 𝑧, 𝑡) can also be used for
this analysis, using its linear relationship with 𝑣𝑥 (𝑥, 𝑧, 𝑡) given by
Eq. (7) in Cooper et al. (2003), and also Kaltman & Kupriyanova
(2023). Thus, for each instant of time, we obtain 𝑧cent as the weighted
centre of the region bounded by the curve 𝑣2

𝑥 (𝑧) and the 𝑧-axis, as
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illustrated in the left column of Fig. 2. The functions Polygon and
Region-Centroid in Mathematica 12 are used for this1.

The right panel of Fig. 2 shows the variation of the wave train’s
centroid position 𝑧cent in a waveguide with a smooth density profile
with time. The fluctuations seen at 𝑡 ≲ 5𝑤/𝐶A0 are attributed to a
combined effect of the initial wave train dispersive formation and
leakage of longer-wavelength harmonics. In general, the time scale
of such a wave train development could represent another new and
potentially interesting observable, but its further discussion is out
of the scope of this work. Thus, for estimating 𝑣cent as the gradient
of 𝑧cent in time, we use the later interval of the obtained 𝑧cent (𝑡)
dependence. In the example illustrated by Fig. 2 for a slab with a
smooth density profile (the parameter 𝑝 = 1 in Eq. 2) and density
ratio 𝜌in/𝜌ext = 10, the value of 𝑣cent is found to be about 1.2𝐶A0.
For a slab with a steep density profile (𝑝 ≫ 1) and the same density
ratio 𝜌in/𝜌ext = 10, the application of the same approach results in
𝑣cent ≈ 1.0𝐶A0.

3 THE CENTROID AND GROUP SPEED OF FAST WAVE
TRAINS

In this section, we investigate the physical meaning of the revealed
centroid speed 𝑣cent through its relationship with the group speed 𝑣g
of individual Fourier harmonics constituting the wave train.

In order to investigate the behaviour of different Fourier harmonics
in the wave train over time, we make the Fourier transform of 𝑣𝑥 (𝑥 =

𝑥max, 𝑧, 𝑡) with respect to 𝑧 (see Fig. 3, left panel). For 𝑡 = 0, the
Fourier power spectrum is of a Gaussian shape which is consistent
with the form of the initial broadband perturbation given by Eq. (3).
For later times, the Fourier power density in the longer-wavelength
part of the spectrum (for 𝑘𝑧 < 𝑘𝑐) decreases to almost zero due to
the leakage of those harmonics into the external medium. Among the
remaining Fourier harmonics with 𝑘𝑧 ≥ 𝑘𝑐 , we consider the most
powerful one and refer to its wavenumber as 𝑘max. In the initial phase
of the wave train development, the value of 𝑘max varies (see Fig. 3,
right panel). However, after some transition period, 𝑘max converges
to a constant value which is found to be about 0.8/𝑤 and 0.7/𝑤 for
the waveguides with the Epstein and step-function density profile,
respectively.

We now determine the group speed 𝑣g = 𝑑 𝜔/𝑑 𝑘𝑧 of the most
powerful Fourier harmonic with the parallel wavenumber 𝑘𝑧 = 𝑘max
in a fully developed wave train by solving the dispersion relation for
a smooth density profile with 𝑝 = 1, i.e., the Epstein profile,

|𝑘𝑧 |𝑤
𝐶2

A0

(
𝑉2

p − 𝐶2
A0

)
=

3
𝐶A∞

√︃
𝐶2

A∞ −𝑉2
p + 2

|𝑘𝑧 |𝑤
, (6)

where 𝑉p = 𝜔/𝑘𝑧 is the phase speed (Cooper et al. 2003). Likewise,
we determine the group speed of fast waves guided by a slab with a
steep density profile, corresponding to 𝑝 → ∞,

tan(𝑤𝑞) = − 𝑞

𝑚
, (7)

where

𝑞2 =

(
𝜔

𝐶A0

)2
− 𝑘2

𝑧 and 𝑚2 = 𝑘2
𝑧 −

(
𝜔

𝐶A∞

)2
,

1 For each 𝑧𝑖 corresponding to the elementary area 𝑎𝑖 under the signal of
interest, the centroid position 𝑧cent is calculated as 𝑧cent = Σ𝑖𝑎𝑖 𝑧𝑖/Σ𝑖𝑎𝑖 . For
more details, see https://reference.wolfram.com/language/ref/
RegionCentroid.html.

(Edwin & Roberts 1982). It is interesting that in the Epstein slab
case the dispersion relation can be solved analytically, as a solution
of a bi-quadratic equation, while in the step function case the roots
of the dispersion relation should be determined numerically. The
obtained dispersion curves are shown in Fig. 4 for the density contrast
𝜌in/𝜌ext = 10. As one can see, the resulting group speeds 𝑣max

g of
the most powerful Fourier harmonics with 𝑘𝑧 = 𝑘max are found to be
about 1.2𝐶A0 and 1.0𝐶A0 for the Epstein and step-function density
profiles, respectively, which approximately coincide with the values
of the centroid speed 𝑣cent detected in Sec. 2. In other words, the
centroid speed 𝑣cent of fast magnetoacoustic wave trains, revealed in
this work as a potentially observable parameter, could be interpreted
as the group speed of the most powerful Fourier harmonic in the wave
train propagating along the waveguide. In addition, we use Eq. (6)–
(7) to illustrate the ratio between the guided fast wave group speed
and phase speed, both taken at the wavenumber 𝑘𝑧 = 𝑘max as most
pronounced in observations (Fig. 4, right panel). As one can see,
the ratio 𝑉g/𝑉p decreases with the density contrast and steepness of
the waveguide. For example, for the waveguide with a steep density
profile and density contrast 𝜌in/𝜌ext = 20, it drops below 0.3.

We now investigate whether the relationship between the wave
train’s centroid speed 𝑣cent and the group speed of the wave train’s
most powerful harmonic 𝑣max

g , revealed empirically for the density
contrast 𝜌in/𝜌ext = 10, persists for other density contrasts. For this,
we perform the analysis described in Sec. 2 and 3 for a broad range
of 𝜌in/𝜌ext, from 5 to 25, typical for the Sun’s corona. As shown by
Fig. 5, for all density contrasts considered, the wave train’s centroid
speed 𝑣cent appears to be about the group speed of the most energetic
Fourier harmonic in the wave train, 𝑣max

g . Indeed, the obtained values
of 𝑣cent and 𝑣max

g , according to Fig. 5, exhibit minor fluctuations in
the vicinity of 1.2𝐶A0 (for the Epstein profile) and𝐶A0 (for the step-
function profile), and differ from each other by less than 3.5% which
is intrinsically below the expected observational uncertainties of the
instrumental or noisy origin. The revealed tendency holds true for the
waveguides with smooth and steep perpendicular density profiles.

4 DISCUSSION AND CONCLUSIONS

We studied the group speed of broadband fast magnetoacoustic wave
trains guided by coronal plasma non-uniformities of plane geome-
try in the low-𝛽 regime, seen as the phenomenon of quasi-periodic
fast-propagating (QFP) waves in multi-band observations. As such
impulsively excited QFP wave trains are subject to strong dispersion
caused by the waveguiding effect, the main aim of this work was to
identify a potential observable which can be used as a characteristic
measure of the wave train’s group speed. The main findings of this
study can be summarised as follows:

• Despite each individual Fourier harmonic constituting the wave
train propagates at its own speed due to the effect of dispersion, the
wave train in the waveguide with a smooth density profile is found to
propagate globally faster than the wave train in the waveguide with a
steep density profile.

• As such a global characteristic of the wave train’s dispersive
dynamics in the waveguide, we identified the position of its effective
centre of mass and referred to its speed of propagation along the
waveguide axis as the wave train’s centroid speed. This centroid
speed of a fully developed wave train is found to be about the internal
Alfvén speed, 𝐶A0 for waveguides with steep (step-function) density
profiles. In consistence with the above finding based on the visual
inspection, the wave train’s centroid speed for a smooth (Epstein-
function) density profile is found to be about 20% higher, i.e., about
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Figure 2. Calculation of the wave train’s centroid position and speed. Panels (a) and (b) show 𝑣2
𝑥 (𝑥=𝑥max, 𝑧, 𝑡 ) at times 𝑡 = 15 𝑤/𝐶A0 and 𝑡 = 25 𝑤/𝐶A0.

The red dot designates the centroid, with position 𝑧cent (see Sec. 2, for details). Panel (c) is the time-distance plot for the centroid, the curve is approximated by
a linear function in the region delimited by the vertical red bars, with the gradient 𝑣cent ≈ 1.2 𝐶A0 being the centroid speed.

Figure 3. Determining the wavenumber 𝑘max of the most powerful parallel spatial harmonic present in the wave train. Left: normalised power spectral density
(PSD) of the wave train for the Epstein transverse density profile at three instances of time; 𝑘smooth

𝑐 ≈ 0.5/𝑤 denotes the cut-off wavenumber given by
Eqs. (4)–(5), and 𝑘max ≈ 0.8/𝑤 is the wavenumber of the most powerful harmonic at 𝑡 → ∞. Right: evolution of 𝑘max with time for the Epstein (red, 𝑝 = 1)
and step-function (green, 𝑝 = 5) density profiles. The values 𝑘smooth

max ≈ 0.8/𝑤 and 𝑘
steep
max ≈ 0.7/𝑤 correspond to the value of 𝑘max at 𝑡 → ∞ for the Epstein and

steep density profiles, respectively.

1.2𝐶A0. Interestingly, the wave train’s centroid position varies non-
monotonically with quasi-periodic fluctuations at the very beginning
of the wave train’s evolution, when it is subject to a combined effect
of dispersion and leakage of longer-wavelength harmonics. The time
scale of this settlement process may represent another potentially
interesting observable which would require a dedicated follow-up
study.

• The revealed centroid speed of such dispersively evolving QFP
wave trains is shown to coincide approximately with the group speed
of the most energetic Fourier harmonic in the wave train for both
smooth and steep transverse density profiles. This result has impor-
tant implications for a more meaningful estimation of the energy flux
carried by the wave train. Indeed, in contrast to previous works which
are based on the assumption that the observed transverse propagat-

ing waves in coronal plasma structures are just weakly dispersive and
hence the group speed can be approximated by the observed phase
speed (e.g., Van Doorsselaere et al. 2014; Ofman & Liu 2018), ob-
servations of the centroid speed would allow for obtaining a lower
bound estimate of the actual energy flux. Our study shows that the
group to phase speed ratio of the most energetic Fourier harmonic
in the wave train (expected to be most pronounced in observations)
can readily be lower than 0.3. The latter would result in more than an
order of magnitude discrepancy if one uses the phase speed instead
of the group speed in the energy flux estimation.

• The group speed of the most energetic Fourier harmonic in the
wave train (characterised by the wave train’s centroid speed) shows
almost no dependence on the density contrast inside and outside the
waveguide, which allows for reducing the number of free parameters

MNRAS 000, 1–7 (2023)
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Figure 4. Left: Finding the group speeds 𝑣
g,smooth
max and 𝑣

g,steep
max of the most powerful harmonic in a fast magnetoacoustic wave train in plasma slabs with the

Epstein and step-function profiles. The red dashed and green solid lines show the dependencies of the group speed 𝑣g on the parallel wavenumber 𝑘𝑧 , obtained
with Eqs. (6)–(7). The values 𝑘smooth

max = 0.8/𝑤 and 𝑘
steep
max = 0.7/𝑤, obtained in Fig. 3, correspond to the group speeds 𝑣g,smooth

max ≈ 1.2𝐶A0 and 𝑣
g,steep
max ≈ 𝐶A0,

respectively. Right: Dependence of the group speed to phase speed ratio 𝑣g/𝑣p, evaluated at 𝑘max, upon the waveguide’s density contrast, for the Epstein (red)
and step-function (green) density profiles.

Figure 5. Comparison of the group speed 𝑣
g
max of the most powerful harmonic

(green line) and the corresponding centroid speed 𝑣cent (blue dots) for varying
density ratios, shown for the Epstein and step-function density profiles. The
average centroid speeds are given by 𝑣

avg
cent ≈ 1.2 𝐶A0 and 𝑣

avg
cent ≈ 𝐶A0 for

smooth and steep density profiles, respectively.

in seismological analysis (cf. Yu et al. 2016; Kolotkov et al. 2021,
who proposed the use of the minimum in the group speed dip which
is sensitive to both the density profile steepness and contrast). In
other words, observations of the wave train’s centroid speed may
help us with assessing the local internal Alfvén speed, 𝐶A0 within
20% uncertainty (as it is found to vary from 𝐶A0 to 1.2𝐶A0, accord-
ing to our analysis). Or, if 𝐶A0 can be obtained from independent
observations, its comparison with the centroid speed can be used for
discriminating between steep and smooth transverse density profiles
of the wave-hosting plasma structure.

The performed analysis is based on a plasma slab model, i.e.,
plane geometry, which is typical, for example, for streamers and/or
current sheets. Thus, in addition to the application of the revealed
centroid speed to observations, the next natural step would be to
generalise this study for cylindrical geometry to account for broader
range of coronal plasma structures. However, as properties of coronal

QFP wave trains in plane and cylindrical geometries were previously
shown to be qualitatively similar (e.g., Li et al. 2018), we expect only
minor quantitative differences.
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